Machines and Masterpieces: Predicting Prices in the Art Auction Market

Autor: Roman Kräussl, Gustavo Manso, Mathieu Aubry, Christophe Spaenjers
Přispěvatelé: Laboratoire d'Informatique Gaspard-Monge (LIGM), Centre National de la Recherche Scientifique (CNRS)-Fédération de Recherche Bézout-ESIEE Paris-École des Ponts ParisTech (ENPC)-Université Paris-Est Marne-la-Vallée (UPEM), Department of Economics, Tilburg University [Netherlands], HEC Research Paper Series, Université Paris-Est Marne-la-Vallée (UPEM)-École des Ponts ParisTech (ENPC)-ESIEE Paris-Fédération de Recherche Bézout-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2020
Předmět:
asset valuation
History
Polymers and Plastics
Computer science
Big data
Machine learning
computer.software_genre
Industrial and Manufacturing Engineering
big data
0502 economics and business
Common value auction
Price level
auctions
050207 economics
Business and International Management
JEL: C - Mathematical and Quantitative Methods/C.C5 - Econometric Modeling/C.C5.C50 - General
Valuation (finance)
JEL: D - Microeconomics/D.D4 - Market Structure
Pricing
and Design/D.D4.D44 - Auctions

050208 finance
Artificial neural network
Ex-ante
business.industry
05 social sciences
experts
Hedonic pricing
TheoryofComputation_GENERAL
JEL: Z - Other Special Topics/Z.Z1 - Cultural Economics • Economic Sociology • Economic Anthropology/Z.Z1.Z11 - Economics of the Arts and Literature
machine learning
[SHS.GESTION]Humanities and Social Sciences/Business administration
Artificial intelligence
business
computer
JEL: G - Financial Economics/G.G1 - General Financial Markets/G.G1.G12 - Asset Pricing • Trading Volume • Bond Interest Rates
Popis: We study the accuracy and usefulness of automated (i.e., machine-generated) valuations for illiquid and heterogeneous real assets. We assemble a database of 1.1 million paintings auctioned between 2008 and 2015. We use a popular machine-learning technique - neural networks - to develop a pricing algorithm based on both non-visual and visual artwork characteristics. Our out-of-sample valuations predict auction prices dramatically better than valuations based on a standard hedonic pricing model. Moreover, they help explaining price levels and sale probabilities even after conditioning on auctioneers' pre-sale estimates. Machine learning is particularly helpful for assets that are associated with high price uncertainty. It can also correct human experts' systematic biases in expectations formation - and identify ex ante situations in which such biases are likely to arise.
Databáze: OpenAIRE