Simultaneous targeting of CD14 and factor XIa by a fusion protein consisting of an anti-CD14 antibody and the modified second domain of bikunin improves survival in rabbit sepsis models

Autor: Jiro Hirose, Masaki Nakamura, Shoji Furusako, Tetsushi Kawahara, Yoshitaka Hosaka, Takashi Takeuchi, Kazuyuki Nakayama
Rok vydání: 2016
Předmět:
Zdroj: European journal of pharmacology. 802
ISSN: 1879-0712
Popis: Severe sepsis is a complex, multifactorial, and rapidly progressing disease characterized by excessive inflammation and coagulation following bacterial infection. To simultaneously suppress pro-inflammatory and pro-coagulant responses, we genetically engineered a novel fusion protein (MR1007) consisting of an anti-CD14 antibody and the modified second domain of bikunin, and evaluated the potential of MR1007 as an anti-sepsis agent. Suppressive effects of MR1007 on lipopolysaccharide (LPS)-induced inflammatory responses were assessed using peripheral blood mononuclear cells or endothelial cells. Its inhibitory activity against the coagulation factor XIa was assessed using a purified enzyme and a chromogenic substrate. Anticoagulant activity was assessed using human or rabbit plasma. Anti-inflammatory and anti-coagulant effects and/or survival benefits were evaluated in an endotoxemia model and a cecal ligation and puncture model. MR1007 inhibited LPS-induced cytokine production in peripheral blood mononuclear cells and endothelial cells, inhibited factor XIa, and exhibited anticoagulant activity. In an endotoxemia model, 0.3-3mg/kg MR1007 suppressed pro-inflammatory and pro-coagulant responses in a dose-dependent manner; at a dose of 3mg/kg, the protein improved survival even when administered 8h after the LPS injection. In addition, 10mg/kg MR1007 administered 2h post cecal ligation and puncture improved survival. However, MR1007 administered at doses up to 30mg/kg did not increase ear bleeding time or bacterial counts in the cecal ligation and puncture model. Thus, simultaneous targeting of CD14 and factor XIa improves survival in the rabbit endotoxemia and sepsis models and represents a promising approach for the treatment of severe sepsis.
Databáze: OpenAIRE