On isometric embeddings of Wasserstein spaces -- the discrete case
Autor: | Tamás Titkos, Dániel Virosztek, György Pál Gehér |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: |
Pure mathematics
54E40 46E27 60A10 60B05 FOS: Physical sciences Isometric exercise Characterization (mathematics) Space (mathematics) 01 natural sciences Surjective function Mathematics - Metric Geometry FOS: Mathematics Countable set Order (group theory) Mathematics::Metric Geometry 0101 mathematics Mathematical Physics Mathematics Applied Mathematics Discrete space 010102 general mathematics Metric Geometry (math.MG) Mathematical Physics (math-ph) Indexed family Functional Analysis (math.FA) 010101 applied mathematics Mathematics - Functional Analysis Analysis |
ISSN: | 0022-247X |
Popis: | The aim of this short paper is to offer a complete characterization of all (not necessarily surjective) isometric embeddings of the Wasserstein space $\mathcal{W}_p(\mathcal{X})$, where $\mathcal{X}$ is a countable discrete metric space and $0 Comment: 11 pages, 1 figure |
Databáze: | OpenAIRE |
Externí odkaz: |