A generalized Abhyankar’s conjecture for simple Lie algebras in characteristic p>5
Autor: | Shusuke Otabe, Fabio Tonini, Lei Zhang |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Mathematische Annalen. 383:1-54 |
ISSN: | 1432-1807 0025-5831 |
Popis: | In the present paper, we study a purely inseparable counterpart of Abhyankar’s conjecture for the affine line in positive characteristic, and prove its validity for all the finite local non-abelian simple group schemes in characteristic $$p>5$$ . The crucial point is how to deal with finite local group schemes which cannot be realized as the Frobenius kernel of a smooth algebraic group. Such group schemes appear as the ones associated with Cartan type Lie algebras. We settle the problem for such Lie algebras by making use of natural gradations or filtrations on them. |
Databáze: | OpenAIRE |
Externí odkaz: |