Perceptual quality of BRDF approximations: dataset and metrics

Autor: Nicolas Bonneel, Jean-Philippe Farrugia, Cyril Soler, Guillaume Lavoué
Přispěvatelé: Origami (Origami), Laboratoire d'InfoRmatique en Image et Systèmes d'information (LIRIS), Université Lumière - Lyon 2 (UL2)-École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Lumière - Lyon 2 (UL2)-École Centrale de Lyon (ECL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Models and Algorithms for Visualization and Rendering (MAVERICK), Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jean Kuntzmann (LJK), Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), N. Mitra and I. Viola, ANR-16-CE33-0026,CaLiTrOp,Analyse des opérateurs de transport lumineux pour l'image de synthèse.(2016), Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École Centrale de Lyon (ECL), Université de Lyon-Université Lumière - Lyon 2 (UL2)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Université Lumière - Lyon 2 (UL2)
Rok vydání: 2021
Předmět:
ACM: I.: Computing Methodologies/I.3: COMPUTER GRAPHICS/I.3.7: Three-Dimensional Graphics and Realism/I.3.7.1: Color
shading
shadowing
and texture

Computer science
business.industry
media_common.quotation_subject
ACM: I.: Computing Methodologies/I.3: COMPUTER GRAPHICS/I.3.5: Computational Geometry and Object Modeling/I.3.5.7: Physically based modeling
020207 software engineering
Context (language use)
Pattern recognition
02 engineering and technology
Computer Graphics and Computer-Aided Design
Reflectivity
[INFO.INFO-GR]Computer Science [cs]/Graphics [cs.GR]
Rendering (computer graphics)
Image (mathematics)
Image synthesis
Kernel (image processing)
Perception
0202 electrical engineering
electronic engineering
information engineering

020201 artificial intelligence & image processing
Quality (business)
Bidirectional reflectance distribution function
Artificial intelligence
business
media_common
Zdroj: Computer Graphics Forum
Conference proceedings of Eurographics 2021
Computer Graphics Forum, 2021, Eurographics 2021, 40 (2), pp.327-338. ⟨10.1111/cgf.142636⟩
Computer Graphics Forum, Wiley, 2021, Eurographics 2021, 40 (2)
ISSN: 1467-8659
0167-7055
DOI: 10.1111/cgf.142636
Popis: International audience; Bidirectional Reflectance Distribution Functions (BRDFs) are pivotal to the perceived realism in image synthesis. While measured BRDF datasets are available, reflectance functions are most of the time approximated by analytical formulas for storage efficiency reasons. These approximations are often obtained by minimizing metrics such as L 2 —or weighted quadratic—distances, but these metrics do not usually correlate well with perceptual quality when the BRDF is used in a rendering context, which motivates a perceptual study. The contributions of this paper are threefold. First, we perform a large-scale user study to assess the perceptual quality of 2026 BRDF approximations, resulting in 84138 judgments across 1005 unique participants. We explore this dataset and analyze perceptual scores based on material type and illumination. Second, we assess nine analytical BRDF models in their ability to approximate tabulated BRDFs. Third, we assess several image-based and BRDF-based (Lp, optimal transport and kernel distance) metrics in their ability to approximate perceptual similarity judgments.
Databáze: OpenAIRE