The effect of metallic implants on radiation therapy in spinal tumor patients with metallic spinal implants
Autor: | Young Nam Kang, Seok Hyun Son, Mi-Ryeong Ryu |
---|---|
Rok vydání: | 2012 |
Předmět: |
medicine.medical_treatment
Sensitivity and Specificity Imaging phantom Tomotherapy Cyberknife Humans Dosimetry Medicine Radiology Nuclear Medicine and imaging Radiometry Radiation treatment planning Titanium Spinal Neoplasms Radiological and Ultrasound Technology business.industry Reproducibility of Results Isocenter Radiotherapy Dosage Prostheses and Implants Radiographic Image Enhancement Radiation therapy Oncology Implant Radiotherapy Conformal Artifacts Nuclear medicine business |
Zdroj: | Medical Dosimetry. 37:98-107 |
ISSN: | 0958-3947 |
DOI: | 10.1016/j.meddos.2011.01.007 |
Popis: | The aim of this study was to evaluate the effect of metallic implants on the dose calculation for radiation therapy in patients with metallic implants and to find a way to reduce the error of dose calculation. We made a phantom in which titanium implants were inserted into positions similar to the implant positions in spinal posterior/posterolateral fusion. We compared the calculated dose of the treatment planning systems with the measured dose in the treatment equipment. We used 3 kinds of computed tomography (CT) (kilovoltage CT, extended-scaled kilovoltage CT, and megavoltage CT) and 3 kinds of treatment equipment (ARTISTE, TomoTherapy Hi-Art, and Cyberknife). For measurement of doses, we used an ionization chamber and Gafchromic external beam therapy film. The absolute doses that were measured using an ionization chamber at the isocenter in the titanium phantom were on average 1.9% lower than those in the reference phantom (p = 0.002). There was no statistically significant difference according to the kinds of CT images, the treatment equipment, and the size of the targets. As the distance from the surface of the titanium implants became closer, the measured doses tended to decrease (p < 0.001), and this showed a statistically significant difference among the kinds of CT images: the effect of metallic implants was less in the megavoltage CT than in the kilovoltage CT or the extended-scaled kilovoltage CT. The error caused by the titanium implants was beyond a clinically acceptable range. To reduce the error of dose calculation, we suggest that the megavoltage CT be used for planning. In addition, it is necessary to consider the distance between the titanium implants and the targets or the organs at risk to prescribe the dose for the target and the dose constraint for the organs at risk. |
Databáze: | OpenAIRE |
Externí odkaz: |