A Tychonoff theorem in intuitionistic fuzzy topological spaces
Autor: | A. Haydar Eş, Doğan Çoker, Necla Turanli |
---|---|
Rok vydání: | 2004 |
Předmět: |
Discrete mathematics
Pure mathematics Fuzzy classification Fuzzy measure theory Mathematics::General Mathematics lcsh:Mathematics Fuzzy subalgebra lcsh:QA1-939 Fuzzy logic Mathematics::Logic ComputingMethodologies_PATTERNRECOGNITION TheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGES Mathematics (miscellaneous) Tychonoff's theorem TheoryofComputation_LOGICSANDMEANINGSOFPROGRAMS Computer Science::Logic in Computer Science Fuzzy mathematics Fuzzy number Fuzzy set operations ComputingMethodologies_GENERAL Mathematics |
Zdroj: | International Journal of Mathematics and Mathematical Sciences, Vol 2004, Iss 70, Pp 3829-3837 (2004) |
ISSN: | 1687-0425 0161-1712 |
DOI: | 10.1155/s0161171204403603 |
Popis: | The purpose of this paper is to prove a Tychonoff theorem in the so-called “intuitionistic fuzzy topological spaces.” After giving the fundamental definitions, such as the definitions of intuitionistic fuzzy set, intuitionistic fuzzy topology, intuitionistic fuzzy topological space, fuzzy continuity, fuzzy compactness, and fuzzy dicompactness, we obtain several preservation properties and some characterizations concerning fuzzy compactness. Lastly we give a Tychonoff-like theorem. |
Databáze: | OpenAIRE |
Externí odkaz: |