Cloning and Characterization of a Gene Cluster for Cyclododecanone Oxidation in Rhodococcus ruber SC1

Autor: Kristy N. Kostichka, Qiong Cheng, Stuart M. Thomas, Vasantha Nagarajan, Katharine J. Gibson
Rok vydání: 2001
Předmět:
Zdroj: Journal of Bacteriology. 183:6478-6486
ISSN: 1098-5530
0021-9193
DOI: 10.1128/jb.183.21.6478-6486.2001
Popis: Biological oxidation of cyclic ketones normally results in formation of the corresponding dicarboxylic acids, which are further metabolized in the cell. Rhodococcus ruber strain SC1 was isolated from an industrial wastewater bioreactor that was able to utilize cyclododecanone as the sole carbon source. A reverse genetic approach was used to isolate a 10-kb gene cluster containing all genes required for oxidative conversion of cyclododecanone to 1,12-dodecanedioic acid (DDDA). The genes required for cyclododecanone oxidation were only marginally similar to the analogous genes for cyclohexanone oxidation. The biochemical function of the enzymes encoded on the 10-kb gene cluster, the flavin monooxygenase, the lactone hydrolase, the alcohol dehydrogenase, and the aldehyde dehydrogenase, was determined in Escherichia coli based on the ability to convert cyclododecanone. Recombinant E. coli strains grown in the presence of cyclododecanone accumulated lauryl lactone, 12-hydroxylauric acid, and/or DDDA depending on the genes cloned. The cyclododecanone monooxygenase is a type 1 Baeyer-Villiger flavin monooxygenase (FAD as cofactor) and exhibited substrate specificity towards long-chain cyclic ketones (C 11 to C 15 ), which is different from the specificity of cyclohexanone monooxygenase favoring short-chain cyclic compounds (C 5 to C 7 ).
Databáze: OpenAIRE