The supersingularity of Hurwitz curves

Autor: Michael J. Lynch, Dean Bisogno, Seamus Somerstep, Eric Work, Erin Dawson, Henry Frauenhoff, Amethyst Price, Rachel Pries
Rok vydání: 2019
Předmět:
Zdroj: Involve 12, no. 8 (2019), 1293-1306
ISSN: 1944-4184
1944-4176
1293-1306
DOI: 10.2140/involve.2019.12.1293
Popis: We study when Hurwitz curves are supersingular. Specifically, we show that the curve $H_{n,\ell}: X^nY^\ell + Y^nZ^\ell + Z^nX^\ell = 0$, with $n$ and $\ell$ relatively prime, is supersingular over the finite field $\mathbb{F}_{p}$ if and only if there exists an integer $i$ such that $p^i \equiv -1 \bmod (n^2 - n\ell + \ell^2)$. If this holds, we prove that it is also true that the curve is maximal over $\mathbb{F}_{p^{2i}}$. Further, we provide a complete table of supersingular Hurwitz curves of genus less than 5 for characteristic less than 37.
15 pages. Accepted to Involve
Databáze: OpenAIRE