Brain hematoma computational segmentation

Autor: Luis Javier Martínez, Valentin Molina, Juan Salazar, Williams Salazar, Miguel Vera, J. Arango, Horderlin Vrangel Robles, Frank Sáenz, O Valbuena, Yoleidy Huérfano, Elkin Gelvez, M. Bautista, María Vera
Rok vydání: 2018
Předmět:
Zdroj: Journal of Physics: Conference Series
Vol. 1126, No. 012071 (2018)
doi :10.1088/1742-6596/1126/1/012071
Repositorio Digital USB
Universidad Simón Bolívar
instacron:Universidad Simón Bolívar
ISSN: 1742-6596
1742-6588
DOI: 10.1088/1742-6596/1126/1/012071
Popis: In computed tomography imaging, brain hematoma (BH) segmentation is a very challenging process due to a high variability of BH morphology, low contrast and noisy images. Because of this, BH segmentation is an open problem. In order to approach this problem, we propose an automatic technique, named nonlinear technique (NLT), based on a thresholding method, noise suppression filters, intelligent operators, a clustering strategy and a binary morphological operator. NLT performance is assessed by Jaccard's similarity index (JSI) used to compare automatic and manual BH segmentations. This assessment allows developing a tuning process for establishing the optimal parameters of each of the algorithms which constitute the proposed technique. The results indicate a good correlation, based on JSI, between the manual segmentations and the automatic ones. Finally, the BH volume is generated considering the automatic segmentation. This volume indicates whether or not the patient must undergo a surgical intervention for BH treatment.
Databáze: OpenAIRE