Kink networks for scalar fields in dimension 1+1

Autor: Jacek Jendrej, Gong Chen
Přispěvatelé: Department of Mathematics [University of Toronto], University of Toronto, Laboratoire Analyse, Géométrie et Applications (LAGA), Université Paris 8 Vincennes-Saint-Denis (UP8)-Centre National de la Recherche Scientifique (CNRS)-Université Sorbonne Paris Nord
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Nonlinear Analysis
Nonlinear Analysis, In press
Nonlinear Analysis, In press, 215, ⟨10.1016/j.na.2021.112643⟩
DOI: 10.1016/j.na.2021.112643⟩
Popis: We consider a scalar field equation in dimension $1+1$ with a positive external potential having non-degenerate isolated zeros. We construct weakly interacting pure multi-solitons, that is solutions converging exponentially in time to a superposition of Lorentz-transformed kinks, in the case of distinct velocities. We find that these solutions form a $2K$-dimensional smooth manifold in the space of solutions, where $K$ is the number of the kinks. We prove that this manifold is invariant under the transformations corresponding to the invariances of the equation, that is space-time translations and Lorentz boosts.
Comment: 22 pages
Databáze: OpenAIRE