UroMark-a urinary biomarker assay for the detection of bladder cancer

Autor: Feber, Andrew, Dhami, Pawan, Dong, Liqin, De Winter, Patricia, Tan, Wei Shen, Martínez-Fernández, Mónica, Paul, Dirk S, Hynes-Allen, Antony, Rezaee, Sheida, Gurung, Pratik, Rodney, Simon, Mehmood, Ahmed, Villacampa, Felipe, De La Rosa, Federico, Jameson, Charles, Cheng, Kar Keung, Zeegers, Maurice P, Bryan, Richard T, James, Nicholas D, Paramio, Jesus M, Freeman, Alex, Beck, Stephan, Kelly, John D
Přispěvatelé: RS: CAPHRI - R5 - Optimising Patient Care, Complexe Genetica, Feber, Andrew [0000-0001-5282-0498], Apollo - University of Cambridge Repository
Rok vydání: 2018
Předmět:
Zdroj: Clinical Epigenetics
Repositorio Institucional de la Consejería de Sanidad de la Comunidad de Madrid
Consejería de Sanidad de la Comunidad de Madrid
Clinical epigenetics, 9:8. BioMed Central Ltd
ISSN: 1868-7083
DOI: 10.17863/cam.21459
Popis: Background Bladder cancer (BC) is one of the most common cancers in the western world and ranks as the most expensive to manage, due to the need for cystoscopic examination. BC shows frequent changes in DNA methylation, and several studies have shown the potential utility of urinary biomarkers by detecting epigenetic alterations in voided urine. The aim of this study is to develop a targeted bisulfite next-generation sequencing assay to diagnose BC from urine with high sensitivity and specificity. Results We defined a 150 CpG loci biomarker panel from a cohort of 86 muscle-invasive bladder cancers and 30 normal urothelium. Based on this panel, we developed the UroMark assay, a next-generation bisulphite sequencing assay and analysis pipeline for the detection of bladder cancer from urinary sediment DNA. The 150 loci UroMark assay was validated in an independent cohort (n = 274, non-cancer (n = 167) and bladder cancer (n = 107)) voided urine samples with an AUC of 97%. The UroMark classifier sensitivity of 98%, specificity of 97% and NPV of 97% for the detection of primary BC was compared to non-BC urine. Conclusions Epigenetic urinary biomarkers for detection of BC have the potential to revolutionise the management of this disease. In this proof of concept study, we show the development and utility of a novel high-throughput, next-generation sequencing-based biomarker for the detection of BC-specific epigenetic alterations in urine. Electronic supplementary material The online version of this article (doi:10.1186/s13148-016-0303-5) contains supplementary material, which is available to authorized users.
Databáze: OpenAIRE