A Human 3′ miR-499 Mutation Alters Cardiac mRNA Targeting and Function

Autor: William H. Eschenbacher, Scot J. Matkovich, Yan Zhang, Gerald W. Dorn
Rok vydání: 2012
Předmět:
Zdroj: Circulation Research. 110:958-967
ISSN: 1524-4571
0009-7330
DOI: 10.1161/circresaha.111.260752
Popis: Rationale: MyomiRs miR-499, miR-208a and miR-208b direct cardiac myosin gene expression. Sequence complementarity between miRs and their mRNA targets determines miR effects, but the functional consequences of human myomiR sequence variants are unknown. Objective: To identify and investigate mutations in human myomiRs in order to better understand how and to what extent naturally-occurring sequence variation can impact miR-mRNA targeting and end-organ function. Methods and Results: Screening of ≈2,600 individual DNAs for myomiR sequence variants identified a rare mutation of miR-499, u 17 c in the 3′ end, well outside the seed region thought to determine target recognition. In vitro luciferase reporter analysis showed that the 3′ miR-499 mutation altered suppression of a subset of artificial and natural mRNA targets. Cardiac-specific transgenic expression was used to compare consequences of wild-type and mutant miR-499. Both wild-type and mutant miR-499 induced heart failure in mice, but miR-499 c 17 misdirected recruitment of a subset of miR-499 target mRNAs to cardiomyocyte RNA-induced silencing complexes, altering steady-state cardiac mRNA and protein make-up and favorably impacting cardiac function. In vitro analysis of miR-499 target site mutations and modeling of binding energies revealed abnormal miR-mRNA duplex configurations induced by the c 17 mutation. Conclusions: A naturally occurring miR-499 mutation outside the critical seed sequence modifies mRNA targeting and end-organ function. This first description of in vivo effects from a natural human miR mutation outside the seed sequence supports comprehensive studies of individual phenotypes or disease-modification conferred by miR mutations.
Databáze: OpenAIRE