Finiteq-oscillator

Autor: Anatoliy U. Klimyk, Kurt Bernardo Wolf, Natig M. Atakishiyev
Rok vydání: 2004
Předmět:
Zdroj: Journal of Physics A: Mathematical and General. 37:5569-5587
ISSN: 1361-6447
0305-4470
DOI: 10.1088/0305-4470/37/21/005
Popis: The finite q-oscillator is a model that obeys the dynamics of the harmonic oscillator, with the operators of position, momentum and Hamiltonian being functions of elements of the q-algebra su_q(2). The spectrum of position in this discrete system, in a fixed representation j, consists of 2j+1 "sensor"-points x_s=(1/2)[2s]_q, s=-j, -j+1,..., j, and similarly for the momentum observable. The spectrum of energies is finite and equally spaced, so the system supports coherent states. The wave functions involve dual q-Kravchuk polynomials, which are solutions to a finite-difference Schrodinger equation. Time evolution (times a phase) defines the fractional Fourier-q-Kravchuk transform. In the classical limit q -> 1 we recover the finite oscillator Lie algebra, the N=2j -> infinity limit returns the Macfarlane-Biedenharn q-oscillator and both limits contract the generators to the standard quantum-mechanical oscillator.
20 pages
Databáze: OpenAIRE