Advancing Multiple Imputation for Latent Profile Analysis
Autor: | Marcus R. Waldman |
---|---|
Rok vydání: | 2019 |
Předmět: |
Statistics and Probability
Auxiliary variables Models Statistical Arts and Humanities (miscellaneous) Computer science Data Interpretation Statistical Statistics Computer Simulation lipids (amino acids peptides and proteins) Experimental and Cognitive Psychology General Medicine Missing data Mixture model |
Zdroj: | Multivariate Behavioral Research. 54:157-158 |
ISSN: | 1532-7906 0027-3171 |
DOI: | 10.1080/00273171.2018.1562324 |
Popis: | The treatment of missing data is problematic when conducting latent profile analysis (LPA) when indicator data are missing at random, conditional on auxiliary variables (AVs). This is true even if ... |
Databáze: | OpenAIRE |
Externí odkaz: |