Sequential Design of Mixture Experiments with an Empirically Determined Input Domain and an Application to Burn-up Credit Penalization of Nuclear Fuel Rods
Autor: | Théo Barthe, Thomas J. Santner, François Bachoc, Yann Richet |
---|---|
Přispěvatelé: | Institut de Mathématiques de Toulouse UMR5219 (IMT), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Atos, Toulouse, Ohio State University [Columbus] (OSU), Institut de Radioprotection et de Sûreté Nucléaire (IRSN), ATOS for CNES, Ohio State University (OSU), PSE-ENV/SCAN, Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), Service de caractérisation des sites et des aléas naturels (IRSN/PSE-ENV/SCAN) |
Rok vydání: | 2020 |
Předmět: |
Gaussian process interpolator
FOS: Computer and information sciences Nuclear and High Energy Physics Mathematical optimization Optimization problem Computer science 020209 energy Physical system 02 engineering and technology 01 natural sciences 010305 fluids & plasmas Domain (software engineering) Methodology (stat.ME) Robustness (computer science) Empirically determined input domain [MATH.MATH-ST]Mathematics [math]/Statistics [math.ST] 0103 physical sciences 0202 electrical engineering electronic engineering information engineering General Materials Science [MATH]Mathematics [math] Safety Risk Reliability and Quality Waste Management and Disposal Global optimization Statistics - Methodology Mechanical Engineering Simplex Stochastic simulation Nuclear Energy and Engineering Hyperplane Criticality Sequential analysis Expected Improvement |
Zdroj: | Nuclear Engineering and Design Nuclear Engineering and Design, Elsevier, 2021, 374, pp.111034. ⟨10.1016/j.nucengdes.2020.111034⟩ Nuclear Engineering and Design, 2021, 374, pp.111034. ⟨10.1016/j.nucengdes.2020.111034⟩ |
ISSN: | 0029-5493 1872-759X |
DOI: | 10.48550/arxiv.2004.03854 |
Popis: | International audience; This paper presents methodologies for solving a common nuclear engineering problem using a suitable mathematical framework. Besides its potential for more general applications, this abstract formalization of the problem provides an improved robustness to the solution compared to the empirical treatment used in industrial practice of today. The essence of the paper proposes a sequential design for a stochastic simulator experiment to maximize a computer output y(x). The complications present in applications of interest are (1) the input x is an element of an unknown subset of a positive hyperplane and (2) y(x) is measured with error. The training data for this problem are a collection of historical inputs x corresponding to runs of a physical system that is linked to the simulator and the associated y(x). Two methods are provided for estimating the input domain. An extension of the well-known efficient global optimization (EGO) algorithm is presented to solve the optimization problem. An example of application of the method is given in which patterns of the "combustion rate" of fissile spent fuel rods are determined to maximize the computed k-effective taken to be the "criticality coefficient". |
Databáze: | OpenAIRE |
Externí odkaz: |