Hexamerization of the bacteriophage T4 capsid protein gp23 and its W13V mutant studied by time-resolved tryptophan fluorescence

Autor: J. Bulthuis, Gert van der Zwan, Aike Stortelder, Joost B. Buijs, Cees Gooijer, Johnny Hendriks, Saskia M. van der Vies
Přispěvatelé: BioAnalytical Chemistry, Biochemistry and Molecular Biology, Physical Chemistry, Chemistry and Pharmaceutical Sciences
Jazyk: angličtina
Rok vydání: 2006
Předmět:
Zdroj: Journal of Physical Chemistry B, 110(49), 25050-8. American Chemical Society
Stortelder, A, Hendriks, J C, Buijs, J B, Bulthuis, J, Gooijer, C, van der Vies, S M & van der Zwan, G 2006, ' Hexamerization of the bacteriophage T4 capsid protein gp23 and its W13V mutant studied by time-resolved tryptophan fluorescence ', Journal of Physical Chemistry B, vol. 110, no. 49, pp. 25050-8 . https://doi.org/10.1021/jp064881t
ISSN: 1520-5207
1520-6106
Popis: The bacteriophage T4 capsid protein gp23 was studied using time-resolved and steady-state fluorescence of the intrinsic protein fluorophore tryptophan. In-vitro gp23 consists mostly of monomers at low temperature but forms hexamers at room temperature. To extend our knowledge of the structure and hexamerization characteristics of gp23, the temperature-dependent fluorescence properties of a tryptophan mutant (W13V) were compared to those of wild-type gp23. The W13V mutation is located in the N-terminal part of the protein, which is cleaved off after prohead formation in the live bacteriophage. Results show that W13 plays a role in the hexamerization process but is not needed to stabilize the hexamer once it is formed. Furthermore, besides the monomer-to-hexamer temperature transition (15-23°C and 12-43°C for wild-type and W13V gp23, respectively), we were able to observe denaturation of the N-terminus in hexameric wild-type gp23 around 40°C. In addition, with the aid of a recently published homology model of gp23, the lifetimes obtained from time-resolved fluorescence measurements could tentatively be assigned to specific tryptophan residues. © 2006 American Chemical Society.
Databáze: OpenAIRE