A Nyström-based finite element method on polygonal elements
Autor: | Akash Anand, Steffen Weißer, Jeffrey S. Ovall |
---|---|
Rok vydání: | 2018 |
Předmět: |
Polynomial
Curvilinear coordinates 010103 numerical & computational mathematics Poisson distribution 01 natural sciences Integral equation Finite element method Mathematics::Numerical Analysis 010101 applied mathematics Computational Mathematics symbols.namesake Computational Theory and Mathematics Local space Modeling and Simulation Boundary data symbols Applied mathematics Polygon mesh Mathematics - Numerical Analysis 0101 mathematics ComputingMethodologies_COMPUTERGRAPHICS Mathematics |
Zdroj: | Computers & Mathematics with Applications. 75:3971-3986 |
ISSN: | 0898-1221 |
Popis: | We consider families of finite elements on polygonal meshes, that are defined implicitly on each mesh cell as solutions of local Poisson problems with polynomial data. Functions in the local space on each mesh cell are evaluated via Nystrom discretizations of associated integral equations, allowing for curvilinear polygons and non-polynomial boundary data. Several experiments demonstrate the approximation quality of interpolated functions in these spaces. |
Databáze: | OpenAIRE |
Externí odkaz: |