Polynomial identities for matrices symmetric with respect to the symplectic involution
Autor: | Jordan Dale Hill |
---|---|
Rok vydání: | 2012 |
Předmět: | |
Zdroj: | Journal of Algebra. 349:8-21 |
ISSN: | 0021-8693 |
DOI: | 10.1016/j.jalgebra.2011.10.023 |
Popis: | Let m>1 be a positive integer, F be a field, and let H2m(F,s) denote the subspace of M2m(F) of matrices symmetric with respect to the symplectic involution. We show that H2m(F,s) satisfies a multilinear identity of degree 4m−3, and via this identity we obtain a refinement of a theorem of Rowen concerning s4m−2, a so-called “standard” polynomial identity for H2m(F,s). |
Databáze: | OpenAIRE |
Externí odkaz: |