Inextendibility of spacetimes and Lorentzian length spaces

Autor: Michael Kunzinger, James D. E. Grant, Clemens Sämann
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Mathematics - Differential Geometry
Pure mathematics
Geodesic
53C80
Synthetic curvature bounds
83C75
FOS: Physical sciences
Triangle comparison
General Relativity and Quantum Cosmology (gr-qc)
Curvature
53C23
01 natural sciences
General Relativity and Quantum Cosmology
Article
Mathematics - Metric Geometry
Completeness (order theory)
0103 physical sciences
FOS: Mathematics
Lorentzian length spaces
0101 mathematics
GEOM
Mathematical Physics
Mathematics
53C23
53C50
53B30
53C80
83C75

010102 general mathematics
53C50
Metric Geometry (math.MG)
53B30
Mathematical Physics (math-ph)
Inextendibility
16. Peace & justice
Metric geometry
Differential Geometry (math.DG)
Differential geometry
010307 mathematical physics
Geometry and Topology
Mathematics::Differential Geometry
Causality theory
Length spaces
Analysis
Zdroj: Annals of Global Analysis and Geometry
ISSN: 1572-9060
0232-704X
Popis: We study the low-regularity (in-)extendibility of spacetimes within the synthetic-geometric framework of Lorentzian length spaces developed in [KS:17]. To this end, we introduce appropriate notions of geodesics and timelike geodesic completeness and prove a general inextendibility result. Our results shed new light on recent analytic work in this direction and, for the first time, relate low-regularity inextendibility to (synthetic) curvature blow-up.
21 pages, 1 figure, made assumptions in 5.4 and 5.6 more explicit (strong causality and local TL geodesic connectedness of extension)
Databáze: OpenAIRE