Hida theory over some unitary Shimura varieties without ordinary locus
Autor: | Giovanni Rosso, Riccardo Brasca |
---|---|
Přispěvatelé: | Institut de Mathématiques de Jussieu - Paris Rive Gauche (IMJ-PRG), Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université Pierre et Marie Curie - Paris 6 (UPMC), Concordia University [Montreal], ANR-14-CE25,PerCoLaTor,PERfectoides COrresondance de LAnglands et TORsion dans la cohomologie(2014), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), ANR-14-CE25-0002,PerCoLaTor,PERfectoïdes, cohomologie COmplétée, correspondance de LAnglands et cohomologie de TORsion(2014) |
Rok vydání: | 2021 |
Předmět: |
Pure mathematics
Mathematics - Number Theory 11F33 (Primary) 11F55 (Secondary) Mathematics::Number Theory General Mathematics Hida theory 010102 general mathematics Dimension (graph theory) Type (model theory) 16. Peace & justice Space (mathematics) 01 natural sciences Unitary state [MATH.MATH-NT]Mathematics [math]/Number Theory [math.NT] Iwasawa algebra Bounded function FOS: Mathematics PEL-type Shimura varieties Number Theory (math.NT) 0101 mathematics Locus (mathematics) p-adic modular forms Mathematics::Representation Theory Mathematics |
Zdroj: | American Journal of Mathematics. 143:715-751 |
ISSN: | 1080-6377 |
DOI: | 10.1353/ajm.2021.0017 |
Popis: | We develop Hida theory for Shimura varieties of type A without ordinary locus. In particular we show that the dimension of the space of ordinary forms is bounded independently of the weight and that there is a module of $\Lambda$-adic cuspidal ordinary forms which is of finite type over $\Lambda$, where $\Lambda$ is a twisted Iwasawa algebra. |
Databáze: | OpenAIRE |
Externí odkaz: |