Hida theory over some unitary Shimura varieties without ordinary locus

Autor: Giovanni Rosso, Riccardo Brasca
Přispěvatelé: Institut de Mathématiques de Jussieu - Paris Rive Gauche (IMJ-PRG), Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université Pierre et Marie Curie - Paris 6 (UPMC), Concordia University [Montreal], ANR-14-CE25,PerCoLaTor,PERfectoides COrresondance de LAnglands et TORsion dans la cohomologie(2014), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), ANR-14-CE25-0002,PerCoLaTor,PERfectoïdes, cohomologie COmplétée, correspondance de LAnglands et cohomologie de TORsion(2014)
Rok vydání: 2021
Předmět:
Zdroj: American Journal of Mathematics. 143:715-751
ISSN: 1080-6377
DOI: 10.1353/ajm.2021.0017
Popis: We develop Hida theory for Shimura varieties of type A without ordinary locus. In particular we show that the dimension of the space of ordinary forms is bounded independently of the weight and that there is a module of $\Lambda$-adic cuspidal ordinary forms which is of finite type over $\Lambda$, where $\Lambda$ is a twisted Iwasawa algebra.
Databáze: OpenAIRE