W $$ \mathcal{W} $$ algebras are L∞ algebras
Autor: | Michael Fuchs, Matthias Traube, Ralph Blumenhagen |
---|---|
Rok vydání: | 2017 |
Předmět: |
Physics
Nuclear and High Energy Physics Pure mathematics 010308 nuclear & particles physics Current algebra Witt algebra Conformal and W Symmetry 01 natural sciences Affine Lie algebra Lie conformal algebra Vertex operator algebra Conformal Field Models in String Theory 0103 physical sciences Lie algebra Division algebra lcsh:QC770-798 lcsh:Nuclear and particle physics. Atomic energy. Radioactivity 010306 general physics Knizhnik–Zamolodchikov equations |
Zdroj: | Journal of High Energy Physics, Vol 2017, Iss 7, Pp 1-14 (2017) Journal of High Energy Physics |
ISSN: | 1029-8479 |
DOI: | 10.1007/jhep07(2017)060 |
Popis: | It is shown that the closure of the infinitesimal symmetry transformations underlying classical $$ \mathcal{W} $$ algebras give rise to L∞ algebras with in general field dependent gauge parameters. Therefore, the class of well understood $$ \mathcal{W} $$ algebras provides highly nontrivial examples of such strong homotopy Lie algebras. We develop the general formalism for this correspondence and apply it explicitly to the classical $$ {\mathcal{W}}_3 $$ algebra. |
Databáze: | OpenAIRE |
Externí odkaz: |