Pre-processing techniques for improved detection of vocalization sounds in a neonatal intensive care unit

Autor: Climent Nadeu, Ana Riverola de Veciana, Sergio Vidiella Pinto, Blanca Muñoz Mahamud, Oriol Ros Fornells, Ganna Raboshchuk
Přispěvatelé: Universitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions, Universitat Politècnica de Catalunya. VEU - Grup de Tractament de la Parla
Rok vydání: 2018
Předmět:
Zdroj: Recercat. Dipósit de la Recerca de Catalunya
instname
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
ISSN: 1746-8094
Popis: The sounds occurring in the noisy acoustical environment of a Neonatal Intensive Care Unit (NICU) are thought to affect the growth and neurodevelopment of preterm infants. Automatic sound detection in a NICU is a novel and challenging problem, and it is an essential step in the investigation of how preterm infants react to auditory stimuli of the NICU environment. In this paper, we present our work on an automatic system for detection of vocalization sounds, which are extensively present in NICUs. The proposed system reduces the presence of irrelevant sounds prior to detection. Several pre-processing techniques are compared, which are based on either spectral subtraction or non-negative matrix factorization, or a combination of both. The vocalization sounds are detected from the enhanced audio signal using either generative or discriminative classification models. An audio database acquired in a real-world NICU environment is used to assess the performance of the detection system in terms of frame-level missing and false alarm rates. The inclusion of the enhancement pre-processing step leads to up to 17.54% relative improvement over the baseline.
Databáze: OpenAIRE