Iterated convolutions and endless Riemann surfaces

Autor: David Sauzin, Shingo Kamimoto
Přispěvatelé: Hiroshima University, Institut de Mécanique Céleste et de Calcul des Ephémérides (IMCCE), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Lille-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), A*Midex Hypathie, ANR-12-BS01-0017,CARMA,Combinatoire Algébrique, Résurgence, Moules et Applications(2012), ANR-11-IDEX-0001,Amidex,INITIATIVE D'EXCELLENCE AIX MARSEILLE UNIVERSITE(2011)
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Annali della Scuola Normale Superiore di Pisa, Classe di Scienze
Annali della Scuola Normale Superiore di Pisa, Classe di Scienze, Scuola Normale Superiore 2020, 20 (1), pp.177-215. ⟨10.2422/2036-2145.201708_008⟩
Annali della Scuola Normale Superiore di Pisa, Classe di Scienze, 2020, 20 (1), pp.177-215. ⟨10.2422/2036-2145.201708_008⟩
ISSN: 0391-173X
2036-2145
DOI: 10.2422/2036-2145.201708_008⟩
Popis: We discuss a version of \'Ecalle's definition of resurgence, based on the notion of endless continuability in the Borel plane. We relate this with the notion of \Omega-continuability, where \Omega\ is a discrete filtered set, and show how to construct a universal Riemann surface X_\Omega\ whose holomorphic functions are in one-to-one correspondence with \Omega-continuable functions. We then discuss the \Omega-continuability of convolution products and give estimates for iterated convolutions of the form \hat\phi_1*\cdots *\hat\phi_n. This allows us to handle nonlinear operations with resurgent series, e.g. substitution into a convergent power series.
Comment: 32 pages, 4 figures
Databáze: OpenAIRE