Large lower bounds for the betti numbers of graded modules with low regularity

Autor: Adam Boocher, Derrick Wigglesworth
Rok vydání: 2019
Předmět:
DOI: 10.48550/arxiv.1903.12503
Popis: Suppose that $M$ is a finitely-generated graded module of codimension $c\geq 3$ over a polynomial ring and that the regularity of $M$ is at most $2a-2$ where $a\geq 2$ is the minimal degree of a first syzygy of $M$. Then we show that the sum of the betti numbers of $M$ is at least $\beta_0(M)(2^c + 2^{c-1})$. In addition, if $c \geq 9$ then for each $1\leq i\leq \lceil c/2\rceil$, we show $\beta_i(M)\geq 2\beta_0(M){c \choose i}$.
Comment: 14 pages, 2 figures
Databáze: OpenAIRE