Elimination of ramification II: Henselian rationality
Autor: | Franz-Viktor Kuhlmann |
---|---|
Rok vydání: | 2019 |
Předmět: |
Model theory
Algebraic function field Pure mathematics General Mathematics Ramification (botany) 010102 general mathematics 12J10 Rationality Field (mathematics) 0102 computer and information sciences Function (mathematics) Transcendence degree Commutative Algebra (math.AC) Mathematics - Commutative Algebra 01 natural sciences 010201 computation theory & mathematics FOS: Mathematics 0101 mathematics Uniformization (set theory) Mathematics |
Zdroj: | Israel Journal of Mathematics. 234:927-958 |
ISSN: | 1565-8511 0021-2172 |
DOI: | 10.1007/s11856-019-1940-0 |
Popis: | We prove in arbitrary characteristic that an immediate valued algebraic function field $F$ of transcendence degree 1 over a tame field $K$ is contained in the henselization of $K(x)$ for a suitably chosen $x\in F$. This eliminates ramification in such valued function fields. We give generalizations of this result, relaxing the assumption on $K$. Our theorems have important applications to local uniformization and to the model theory of valued fields in positive and mixed characteristic. new improved version |
Databáze: | OpenAIRE |
Externí odkaz: |