Alterations of redox dynamics and desmin post-translational modifications in skeletal muscle models of desminopathies

Autor: Meng-Er Huang, Guilhem Clary, Sabrina Batonnet-Pichon, Florence Delort, Fany Bourgois-Rocha, Eva Cabet, Onnik Agbulut, Alain Lilienbaum, Coralie Hakibilen, Patrick Vicart, Bertrand-David Segard
Přispěvatelé: Unité de Biologie Fonctionnelle et Adaptative (BFA (UMR_8251 / U1133)), Université Paris Diderot - Paris 7 (UPD7)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Stress génotoxiques et cancer, Université Paris-Sud - Paris 11 (UP11)-Institut Curie [Paris]-Centre National de la Recherche Scientifique (CNRS), Institut Cochin (IC UM3 (UMR 8104 / U1016)), Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Adaptation Biologique et Vieillissement = Biological Adaptation and Ageing (B2A), Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Biologie Paris Seine (IBPS), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud - Paris 11 (UP11)-Institut Curie-Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)
Rok vydání: 2019
Předmět:
0301 basic medicine
Male
intermediate filaments
Mutant
Muscle Proteins
Mice
Transgenic

Oxidative phosphorylation
[SDV.BC.BC]Life Sciences [q-bio]/Cellular Biology/Subcellular Processes [q-bio.SC]
Biology
Protein aggregation
medicine.disease_cause
Antioxidants
Muscular Dystrophies
Desmin
03 medical and health sciences
Mice
0302 clinical medicine
N-acetyl-L-cysteine
medicine
Intermediate Filament Protein
Animals
Homeostasis
Humans
Intermediate filament
Muscle
Skeletal

Cells
Cultured

aggregation
Skeletal muscle
Cell Biology
Cell biology
Mice
Inbred C57BL

Disease Models
Animal

Oxidative Stress
030104 developmental biology
medicine.anatomical_structure
Amino Acid Substitution
030220 oncology & carcinogenesis
myopathies
Mutant Proteins
Cardiomyopathies
Oxidation-Reduction
Protein Processing
Post-Translational

Oxidative stress
Zdroj: Experimental Cell Research
Experimental Cell Research, Elsevier, 2019, 383 (2), pp.111539. ⟨10.1016/j.yexcr.2019.111539⟩
ISSN: 1090-2422
0014-4827
DOI: 10.1016/j.yexcr.2019.111539⟩
Popis: International audience; Desminopathies are a type of myofibrillar myopathy resulting from mutations in DES, encoding the intermediate filament protein desmin. They display heterogeneous phenotypes, suggesting environment influences. Patient muscle proteins show oxidative features linking oxidative stress, protein aggregation, and abnormal protein deposition. To improve understanding of redox balance in desminopathies, we further developed cellular models of four pathological mutants localized in 2B helical domain (the most important region for desmin polymerization) to explore desmin behavior upon oxidative stress. We show that the mutations desQ389P and desD399Y share common stress-induced aggregates, desR406W presents more scattered cytoplasmic aggregative pattern, and pretreatment with N-acetyl-l-cysteine (NAC), an antioxidant molecule, prevents all type of aggregation. Mutants desD399Y and desR406W had delayed oxidation kinetics following H2O2 stress prevented by NAC pretreatment. Further, we used AAV-injected mouse models to confirm in vivo effects of N-acetyl-l-cysteine. AAV-desD399Y-injected muscles displayed similar physio-pathological characteristics as observed in patients. However, after 2 months of NAC treatment, they did not have reduced aggregates. Finally, in both models, stress induced some post-translational modifications changing Isoelectric Point, such as potential hyperphosphorylations, and/or molecular weight of human desmin by proteolysis. However, each mutant presented its own pattern that seemed to be post-aggregative. In conclusion, our results indicate that individual desmin mutations have unique pathological molecular mechanisms partly linked to alteration of redox homeostasis. Integrating these mutant-specific behaviors will be important when considering future
Databáze: OpenAIRE