Testing for Associations between Loci and Environmental Gradients Using Latent Factor Mixed Models

Autor: Eric Frichot, Sean D. Schoville, Guillaume Bouchard, Olivier François
Přispěvatelé: Techniques de l'Ingénierie Médicale et de la Complexité - Informatique, Mathématiques et Applications, Grenoble - UMR 5525 (TIMC-IMAG), VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF), Xerox Research Centre Europe [Meylan], Xerox Company, Biologie Computationnelle et Mathématique (TIMC-IMAG-BCM), VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF), ANR-11-LABX-0025,PERSYVAL-lab,Systemes et Algorithmes Pervasifs au confluent des mondes physique et numérique(2011)
Rok vydání: 2013
Předmět:
FOS: Computer and information sciences
environmental correlations
0106 biological sciences
Mixed model
Population
Population genetics
Computational biology
Environment
Biology
Statistics - Computation
010603 evolutionary biology
01 natural sciences
03 medical and health sciences
latent factor models
Genetic variation
Methods
Genetics
Humans
Selection
Genetic

Gene–environment interaction
Quantitative Biology - Populations and Evolution
education
Molecular Biology
Computation (stat.CO)
Ecology
Evolution
Behavior and Systematics

030304 developmental biology
Local adaptation
0303 health sciences
education.field_of_study
[SDV.GEN.GPO]Life Sciences [q-bio]/Genetics/Populations and Evolution [q-bio.PE]
Polymorphism
Genetic

genome scans
Natural selection
Ecology
Populations and Evolution (q-bio.PE)
Genetic Variation
population structure
Models
Theoretical

Random effects model
Adaptation
Physiological

Genetics
Population

FOS: Biological sciences
Gene-Environment Interaction
Algorithms
local adaptation
Zdroj: Molecular Biology and Evolution
Molecular Biology and Evolution, Oxford University Press (OUP), 2013, 30 (7), pp.1687-99. ⟨10.1093/molbev/mst063⟩
ISSN: 1537-1719
0737-4038
DOI: 10.1093/molbev/mst063
Popis: Adaptation to local environments often occurs through natural selection acting on a large number of loci, each having a weak phenotypic effect. One way to detect these loci is to identify genetic polymorphisms that exhibit high correlation with environmental variables used as proxies for ecological pressures. Here, we propose new algorithms based on population genetics, ecological modeling, and statistical learning techniques to screen genomes for signatures of local adaptation. Implemented in the computer program "latent factor mixed model" (LFMM), these algorithms employ an approach in which population structure is introduced using unobserved variables. These fast and computationally efficient algorithms detect correlations between environmental and genetic variation while simultaneously inferring background levels of population structure. Comparing these new algorithms with related methods provides evidence that LFMM can efficiently estimate random effects due to population history and isolation-by-distance patterns when computing gene-environment correlations, and decrease the number of false-positive associations in genome scans. We then apply these models to plant and human genetic data, identifying several genes with functions related to development that exhibit strong correlations with climatic gradients.
Comment: 29 pages with 8 pages of Supplementary Material (V2 revised presentation and results part)
Databáze: OpenAIRE