Zonal instability and wave trapping
Autor: | David Zarzoso, O Panico, G. Dif-Pradalier, Yanick Sarazin, C. Gillot, Xavier Garbet, E Bourne, V. Grandgirard, Laure Vermare, Philippe Ghendrih, R Varennes |
---|---|
Přispěvatelé: | Institut de Recherche sur la Fusion par confinement Magnétique (IRFM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), École normale supérieure de Lyon (ENS de Lyon), Physique des interactions ioniques et moléculaires (PIIM), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique des Plasmas (LPP), Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École polytechnique (X)-Sorbonne Université (SU)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Garbet, Xavier, École normale supérieure - Lyon (ENS Lyon) |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Physics
History Zonal flow (plasma) Trapping Mechanics 01 natural sciences Power law Instability 010305 fluids & plasmas Computer Science Applications Education Collision operator Flow (mathematics) Physics::Plasma Physics [PHYS.PHYS.PHYS-PLASM-PH]Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph] [PHYS.PHYS.PHYS-PLASM-PH] Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph] 0103 physical sciences Physics::Space Physics Diffusion (business) 010306 general physics Sign (mathematics) |
Zdroj: | Journal of Physics: Conference Series Journal of Physics: Conference Series, 2021 HAL Journal of Physics: Conference Series, IOP Publishing, 2021 |
ISSN: | 1742-6588 1742-6596 |
Popis: | This paper presents a model for zonal flow generation based on a wave kinetic equation coupled to a poloidal momentum equation in a regime where wave trapping matters. Several models of the wave collision operator have been tested: Krook, diffusion and diffusion plus an instability growth rate. Conditions for zonal instability have been identified. It is found that a zonal instability is possible in all cases. However the force is a power law of the zonal velocity, so different from the quasi-linear case of random phases that produces a force that is linear in velocity. Also the zonal force may change sign, leading to flow radial profiles that are not sinusoidal. |
Databáze: | OpenAIRE |
Externí odkaz: |