Functioning of a metabolic flux sensor in Escherichia coli
Autor: | Benjamin Volkmer, Luca Gerosa, Matthias Heinemann, Bart R. B. Haverkorn van Rijsewijk, Karl Kochanowski, Alexander Schmidt |
---|---|
Přispěvatelé: | Molecular Systems Biology |
Jazyk: | angličtina |
Rok vydání: | 2013 |
Předmět: |
Transcription
Genetic Metabolite Physiological Pyruvate Kinase Fructose 1 6-bisphosphatase Models Biological Feedback chemistry.chemical_compound Genetic Models Extracellular Glycolysis Transcription factor Feedback Physiological Multidisciplinary biology Escherichia coli K12 Bacterial Biological Sciences Biological Fructose-Bisphosphatase Kinetics Biochemistry chemistry Genes Genes Bacterial biology.protein Biophysics Transcription Pyruvate kinase Intracellular Function (biology) Metabolic Networks and Pathways |
Zdroj: | Proceedings of the National Academy of Sciences of the United States of America, 110(3), 1130-1135. NATL ACAD SCIENCES |
ISSN: | 0027-8424 |
Popis: | Regulation of metabolic operation in response to extracellular cues is crucial for cells’ survival. Next to the canonical nutrient sensors, which measure the concentration of nutrients, recently intracellular “metabolic flux” was proposed as a novel impetus for metabolic regulation. According to this concept, cells would have molecular systems (“flux sensors”) in place that regulate metabolism as a function of the actually occurring metabolic fluxes. Although this resembles an appealing concept, we have not had any experimental evidence for the existence of flux sensors and also we have not known how these flux sensors would work in detail. Here, we show experimental evidence that supports the hypothesis that Escherichia coli is indeed able to measure its glycolytic flux and uses this signal for metabolic regulation. Combining experiment and theory, we show how this flux-sensing function could emerge from an aggregate of several molecular mechanisms: First, the system of reactions of lower glycolysis and the feedforward activation of fructose-1,6-bisphosphate on pyruvate kinase translate flux information into the concentration of the metabolite fructose-1,6-bisphosphate. The interaction of this “flux-signaling metabolite” with the transcription factor Cra then leads to flux-dependent regulation. By responding to glycolytic flux, rather than to the concentration of individual carbon sources, the cell may minimize sensing and regulatory expenses. |
Databáze: | OpenAIRE |
Externí odkaz: |