Optimal Decoding of Cellular Identities in a Genetic Network
Autor: | Eric Wieschaus, William Bialek, Thomas Gregor, Mariela D. Petkova, Gašper Tkačik |
---|---|
Přispěvatelé: | Harvard University, Department of Physics, Princeton University (DPPU), Princeton University, Institute of Science and Technology [Klosterneuburg, Austria] (IST Austria), Physique des fonctions biologiques / Physics of Biological Functions, Institut Pasteur [Paris] (IP)-Centre National de la Recherche Scientifique (CNRS), This work was supported, in part, by U.S. NIH grants (P50GM071508, R01GM077599, and R01GM097275), U.S. NSF grants (PHY-1607612, CCF-0939370, Center for the Science of Information, PHY–1734030, Center for the Physics of Biological Function), an Austrian Science Fund grant (FWF P28844 to G.T.), and an Howard Hughes Medical Institute International Student Research Fellowship (to M.D.P.)., Harvard University [Cambridge], Institute of Science and Technology [Austria] (IST Austria), Institut Pasteur [Paris]-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
Embryo
Nonmammalian MESH: GTPase-Activating Proteins 0302 clinical medicine MESH: Gene Expression Regulation Developmental Drosophila Proteins MESH: Embryonic Development Gene Regulatory Networks MESH: Animals MESH: Models Genetic [SDV.BDD]Life Sciences [q-bio]/Development Biology MESH: Gene Regulatory Networks 0303 health sciences cell fate GTPase-Activating Proteins Gene Expression Regulation Developmental Cell Differentiation MESH: Transcription Factors [SDV.BIBS]Life Sciences [q-bio]/Quantitative Methods [q-bio.QM] Drosophila melanogaster Drosophila developmental precision Algorithm Decoding methods MESH: Body Patterning MESH: Cell Differentiation MESH: Drosophila Proteins [PHYS.PHYS.PHYS-BIO-PH]Physics [physics]/Physics [physics]/Biological Physics [physics.bio-ph] Genetic network Embryonic Development Cell fate determination Biology General Biochemistry Genetics and Molecular Biology Article MESH: Drosophila melanogaster 03 medical and health sciences Position (vector) genetic networks Animals Enhancer Gap gene 030304 developmental biology Body Patterning Models Genetic embryonic patterning fungi MESH: Embryo Nonmammalian cell specification Expression (mathematics) optimality quantitative imaging 030217 neurology & neurosurgery Free parameter Transcription Factors |
Zdroj: | Cell Cell, 2019, 176 (4), pp.844-855.e15. ⟨10.1016/j.cell.2019.01.007⟩ Cell, Elsevier, 2019, 176 (4), pp.844-855.e15. ⟨10.1016/j.cell.2019.01.007⟩ |
ISSN: | 0092-8674 1097-4172 |
Popis: | In developing organisms, spatially prescribed cell identities are thought to be determined by the expression levels of multiple genes. Quantitative tests of this idea, however, require a theoretical framework capable of exposing the rules and precision of cell specification over developmental time. Using the gap gene network in the early fly embryo as an example, we use such a framework to show how expression levels of the four gap genes can be jointly decoded into an optimal specification of position with 1% accuracy. The decoder correctly predicts, with no free parameters, the dynamics of pair-rule expression patterns at different developmental time points and in various mutant backgrounds. Precise cellular identities are thus available at the earliest stages of development, contrasting the prevailing view of positional information being slowly refined across successive layers of the patterning network. Our results suggest that developmental enhancers closely approximate a mathematically optimal decoding strategy. |
Databáze: | OpenAIRE |
Externí odkaz: |