The temperature-jump problem for a variable collision frequency model
Autor: | Liliane Basso Barichello, C. E. Siewert, A. C. R. Bartz, Mariza de Camargo |
---|---|
Rok vydání: | 2002 |
Předmět: |
Fluid Flow and Transfer Processes
Physics Métodos de ordenadas discretas Field (physics) Mechanical Engineering Computational Mechanics Lattice Boltzmann methods Magnitude (mathematics) Equação não linear de Boltzmann Condensed Matter Physics Boltzmann equation Modelo de William Collision frequency Problemas com temperaturas altas Mechanics of Materials Métodos iterativos Modelo BGK Temperature jump Applied mathematics Development (differential geometry) Statistical physics Campos de gases rarefeitos Variable (mathematics) |
Zdroj: | Repositório Institucional da UFRGS Universidade Federal do Rio Grande do Sul (UFRGS) instacron:UFRGS |
ISSN: | 1089-7666 1070-6631 |
Popis: | An analytical version of the discrete-ordinates method is used here in the field of rarefied-gas dynamics to solve a version of the temperature-jump problem that is based on a linearized, variable collision frequency model of the Boltzmann equation. In addition to a complete development of the discrete-ordinates method for the application considered, the computational algorithm is implemented to yield accurate numerical results for three specific cases: the classical BGK model, the Williams model (the collision frequency is proportional to the magnitude of the velocity), and the rigid-sphere model. |
Databáze: | OpenAIRE |
Externí odkaz: |