Harnessing no-photon exciton generation chemistry to engineer semiconductor nanostructures

Autor: Gyula Károlyházy, David Beke, Adam Gali, Katalin Kamarás, G. Bortel, Zsolt Czigány
Rok vydání: 2017
Předmět:
Zdroj: Scientific Reports, Vol 7, Iss 1, Pp 1-6 (2017)
Scientific Reports
ISSN: 2045-2322
DOI: 10.1038/s41598-017-10751-x
Popis: Production of semiconductor nanostructures with high yield and tight control of shape and size distribution is an immediate quest in diverse areas of science and technology. Electroless wet chemical etching or stain etching can produce semiconductor nanoparticles with high yield but is limited to a few materials because of the lack of understanding the physical-chemical processes behind. Here we report a no-photon exciton generation chemistry (NPEGEC) process, playing a key role in stain etching of semiconductors. We demonstrate NPEGEC on silicon carbide polymorphs as model materials. Specifically, size control of cubic silicon carbide nanoparticles of diameter below ten nanometers was achieved by engineering hexagonal inclusions in microcrystalline cubic silicon carbide. Our finding provides a recipe to engineer patterned semiconductor nanostructures for a broad class of materials.
Databáze: OpenAIRE