Genetically determined variation in the number of phenotypically defined hematopoietic progenitor and stem cells and in their response to early-acting cytokines

Autor: Gary Van Zant, Els Henckaerts, Hans-Willem Snoeck, Patricia Rebollo, Hartmut Geiger, Jessica C. Langer
Rok vydání: 2002
Předmět:
Zdroj: Blood. 99(11)
ISSN: 0006-4971
Popis: Quantitative trait analysis may shed light on mechanisms regulating hematopoiesis in vivo. Strain-dependent variation existed among C57BL/6 (B6), DBA/2, and BXD recombinant inbred mice in the responsiveness of primitive progenitor cells to the early-acting cytokines kit ligand, flt3 ligand, and thrombopoietin. A significant quantitative trait locus was found on chromosome 2 that could not be confirmed in congenic mice, however, probably because of epistasis. Because it has been shown that alleles of unknown X-linked genes confer a selective advantage to hematopoietic stem cells in vivo in humans and in cats, we also analyzed reciprocal male D2B6F1 and B6D2F1 mice, revealing an X-linked locus regulating the responsiveness of progenitor and stem cells to early-acting factors. Among DBA/2, B6, and BXD recombinant inbred mice, correlating genetic variation was found in the absolute number and frequency of Lin(-)Sca1(++)kit(+) cells, which are highly enriched in hematopoietic progenitor and stem cells, and in the number of Lin(-)Sca1(++)kit(-) cells, a population whose biologic significance is unknown, suggesting that both populations are functionally related. Suggestive quantitative trait loci (QTLs) for the number of Lin(-)Sca1(++) cells on chromosomes 2, 4, and 7 were confirmed in successive rounds of mapping. The locus on chromosome 2 was confirmed in congenic mice. We thus demonstrated genetic variation in the response to cytokines critical for hematopoiesis in vivo and in the pool size of cells belonging to a phenotype used to isolate essentially pure primitive progenitor and stem cells, and we identified loci that may be relevant to the regulation of hematopoiesis in steady state. ispartof: BLOOD vol:99 issue:11 pages:3947-3954 ispartof: location:United States status: published
Databáze: OpenAIRE