$L^{p}$ and Weak-$L^{p}$ estimates for the number of integer points in translated domains
Autor: | Leonardo Colzani, Giancarlo Travaglini, Luca Brandolini, Giacomo Gigante |
---|---|
Přispěvatelé: | Brandolini, L, Colzani, L, Gigante, G, Travaglini, G |
Jazyk: | angličtina |
Rok vydání: | 2015 |
Předmět: |
Mathematics - Number Theory
General Mathematics Combinatorics 11H06 52C07 Mathematics - Analysis of PDEs Settore MAT/05 - Analisi Matematica FOS: Mathematics ComputingMethodologies_DOCUMENTANDTEXTPROCESSING Lattice points Discrepancy Number Theory (math.NT) MAT/05 - ANALISI MATEMATICA Analysis of PDEs (math.AP) Volume (compression) Integer (computer science) Mathematics |
ISSN: | 0305-0041 |
Popis: | Revisiting and extending a recent result of M. Huxley, we estimate the Lp($\mathbb{T}$d) and Weak–Lp($\mathbb{T}$d) norms of the discrepancy between the volume and the number of integer points in translated domains. |
Databáze: | OpenAIRE |
Externí odkaz: |