Brill–Noether theory of squarefree modules supported on a graph
Autor: | Henning Lohne, Gunnar Fløystad |
---|---|
Rok vydání: | 2013 |
Předmět: |
Pure mathematics
Algebra and Number Theory 13F55 13C14 (Primary) 14H51 (Secondary) Mathematics::Commutative Algebra Square-free integer Mathematics - Commutative Algebra Commutative Algebra (math.AC) Graph Combinatorics symbols.namesake Mathematics::Algebraic Geometry Jacobian matrix and determinant FOS: Mathematics symbols Mathematics - Combinatorics Combinatorics (math.CO) Brill–Noether theory Mathematics |
Zdroj: | Journal of Pure and Applied Algebra |
ISSN: | 0022-4049 |
DOI: | 10.1016/j.jpaa.2012.09.010 |
Popis: | We investigate the analogy between squarefree Cohen-Macaulay modules supported on a graph and line bundles on a curve. We prove a Riemann-Roch theorem, we study the Jacobian and gonality of a graph, and we prove Clifford's theorem. Comment: Major revision, new author added, paper restructured, results corrected |
Databáze: | OpenAIRE |
Externí odkaz: |