An Explicit Stabilized Runge–Kutta–Legendre Super Time-Stepping Scheme for the Richards Equation
Autor: | Harihar Khanal, Kedar Nath Uprety, Ramesh Chandra Timsina |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
FTCS scheme
Article Subject General Mathematics General Engineering Finite difference method 010103 numerical & computational mathematics Engineering (General). Civil engineering (General) Space (mathematics) 01 natural sciences Mathematics::Numerical Analysis 010101 applied mathematics Runge–Kutta methods Time stepping Scheme (mathematics) QA1-939 Applied mathematics Richards equation TA1-2040 0101 mathematics Legendre polynomials Mathematics |
Zdroj: | Mathematical Problems in Engineering, Vol 2021 (2021) |
ISSN: | 1024-123X |
DOI: | 10.1155/2021/5573913 |
Popis: | We solve one-dimensional Kirchhof transformed Richards equation numerically using finite difference method with various time-stepping schemes, forward in time central in space (FTCS), backward in time central in space (BTCS), Crank–Nicolson (CN), and a stabilized Runge–Kutta–Legendre super time-stepping (RKL), and compare their performances. |
Databáze: | OpenAIRE |
Externí odkaz: |