Thermo-mechanical fatigue evaluation of a thermal barrier coating bond-coatless system
Autor: | Jonathan Cormier, Robin Kromer, S. Costil, F. Mauget, L. Despres |
---|---|
Přispěvatelé: | Institut Pprime (PPRIME), Université de Poitiers-ENSMA-Centre National de la Recherche Scientifique (CNRS), ENDOmmagement et durabilité ENDO (ENDO), Département Physique et Mécanique des Matériaux (Département Physique et Mécanique des Matériaux), Université de Poitiers-ENSMA-Centre National de la Recherche Scientifique (CNRS)-Université de Poitiers-ENSMA-Centre National de la Recherche Scientifique (CNRS)-Institut Pprime (PPRIME), Université de Poitiers-ENSMA-Centre National de la Recherche Scientifique (CNRS)-Université de Poitiers-ENSMA-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Ecologie Alpine (LECA ), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Laboratoire LERMPS (LERMPS), Université de Technologie de Belfort-Montbeliard (UTBM), LABEX INTERACTIFS |
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
Materials science
[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph] 02 engineering and technology engineering.material Thermo-mechanical fatigue 01 natural sciences [SPI.AUTO]Engineering Sciences [physics]/Automatic Stress (mechanics) Thermal barrier coating Coating [PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph] 0103 physical sciences General Materials Science [PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph] Composite material [PHYS.MECA.BIOM]Physics [physics]/Mechanics [physics]/Biomechanics [physics.med-ph] Thermal spraying 010302 applied physics [SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph] [PHYS.MECA.VIBR]Physics [physics]/Mechanics [physics]/Vibrations [physics.class-ph] Mechanical Engineering [SPI.FLUID]Engineering Sciences [physics]/Reactive fluid environment [SPI.NRJ]Engineering Sciences [physics]/Electric power Superalloy γ′-rafting [CHIM.MATE]Chemical Sciences/Material chemistry [PHYS.MECA.MSMECA]Physics [physics]/Mechanics [physics]/Materials and structures in mechanics [physics.class-ph] 021001 nanoscience & nanotechnology Condensed Matter Physics Microstructure [PHYS.MECA.ACOU]Physics [physics]/Mechanics [physics]/Acoustics [physics.class-ph] Superalloy [SPI.ELEC]Engineering Sciences [physics]/Electromagnetism [CHIM.POLY]Chemical Sciences/Polymers Creep Mechanics of Materials Thermal-overaging engineering [PHYS.MECA.THER]Physics [physics]/Mechanics [physics]/Thermics [physics.class-ph] 0210 nano-technology |
Zdroj: | Materials Science and Engineering: A Materials Science and Engineering: A, Elsevier, 2019, 756, pp.130-141. ⟨10.1016/j.msea.2019.04.020⟩ |
ISSN: | 0921-5093 |
DOI: | 10.1016/j.msea.2019.04.020⟩ |
Popis: | International audience; Thermal barrier coating systems are often subjected to complex thermo-mechanical loading involving a combination of mechanical stresses under complex thermal gradients, in addition to the contribution of oxidation to the damage processes. Recently, a thermal-barrier coating bond-coatless system has been developed using prior-surface treatments. Atmospheric plasma spray (APS) Yttria-Stabilized-Zirconia (YSZ) is deposited on the AM1 nickel-based single crystalline superalloy substrate. The substrate has been either grit-blasted or laser textured before thermal spraying. The durability of these systems are investigated performing out-of-phase load controlled thermo-mechanical fatigue (TMF) tests in the 500–1100 °C and 120–700 MPa temperature and stress ranges. The contribution of a prior thermal over-aging of 200 h at 1100 °C has also been investigated. The damage mechanisms during out-of-phase TMF of the different TBC bond-coat-less systems have been studied and compared to the ones obtained during isothermal creep at 1100 °C/120 MPa. It is shown that a prior thermal over-aging favors cycling ratcheting during TMF cycling due to the degradation of the substrate microstructure. In addition, the coating damage mechanisms are observed to depend on the prior-surface treatment and thermal over-aging. Cracks perpendicular to the interface in the top coat have been observed whatever the specimens and microstructural state. Top coats are debonded for grit-blasted substrates while crack bifurcation above key holes is observed for laser textured substrates, leading to a better top coat TMF durability. |
Databáze: | OpenAIRE |
Externí odkaz: |