$K$-theory for real $k$-graph $C^*$-algebras

Autor: Jeffrey L. Boersema, Elizabeth Gillaspy
Rok vydání: 2021
Předmět:
DOI: 10.48550/arxiv.2108.09303
Popis: We initiate the study of real $C^*$-algebras associated to higher-rank graphs $\Lambda$, with a focus on their $K$-theory. Following Kasparov and Evans, we identify a spectral sequence which computes the $\mathcal{CR}$ $K$-theory of $C^*_{\mathbb R} (\Lambda, \gamma)$ for any involution $\gamma$ on $\Lambda$, and show that the $E^2$ page of this spectral sequence can be straightforwardly computed from the combinatorial data of the $k$-graph $\Lambda$ and the involution $\gamma$. We provide a complete description of $K^{CR}(C^*_{\mathbb R}(\Lambda, \gamma))$ for several examples of higher-rank graphs $\Lambda$ with involution.
Databáze: OpenAIRE