On families of cubic split Thue equations parametrised by linear recurrence sequences
Autor: | Hilgart, Tobias |
---|---|
Rok vydání: | 2023 |
Předmět: | |
Zdroj: | Publicationes Mathematicae Debrecen. 102:439-457 |
ISSN: | 0033-3883 |
DOI: | 10.5486/pmd.2023.9445 |
Popis: | Let $(A_n)_{n\in \mathbb{N}}, (B_n)_{n\in \mathbb{N}} \in \mathbb{Z}^{\mathbb{N}}$ be two linear-recurrent sequences that meet a dominant root condition and a few more technical requirements. We show that the split family of Thue equations \[ |X(X-A_n Y)(X-B_n Y) - Y^3| = 1 \] has but the trivial solutions $\pm\{ (0,1), (1,0), (A_n,1), (B_n,1) \}$, if the parameter $n$ is larger than some effectively computable constant. |
Databáze: | OpenAIRE |
Externí odkaz: |