On the existence of admissible supersingular representations of $p$-adic reductive groups

Autor: Karol Kozioł, Florian Herzig, Marie-France Vigneras
Přispěvatelé: Department of Mathematics [University of Toronto], University of Toronto, University of Michigan [Ann Arbor], University of Michigan System, Institut de Mathématiques de Jussieu - Paris Rive Gauche (IMJ-PRG (UMR_7586)), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: Forum of Mathematics, Sigma
Forum of Mathematics, Sigma, Cambridge University press, 2020, 8, pp.e2. ⟨10.1017/fms.2019.50⟩
ISSN: 2050-5094
DOI: 10.1017/fms.2019.50⟩
Popis: Suppose that $\mathbf{G}$ is a connected reductive group over a finite extension $F/\mathbb{Q}_p$, and that $C$ is a field of characteristic $p$. We prove that the group $\mathbf{G}(F)$ admits an irreducible admissible supercuspidal, or equivalently supersingular, representation over $C$.
58 pages, with an appendix by Sug Woo Shin. This replaces arXiv:1712.10142 and arXiv:1808.08255. v2: Minor changes following referee report; to appear in Forum Math. Sigma
Databáze: OpenAIRE