On the existence of admissible supersingular representations of $p$-adic reductive groups
Autor: | Karol Kozioł, Florian Herzig, Marie-France Vigneras |
---|---|
Přispěvatelé: | Department of Mathematics [University of Toronto], University of Toronto, University of Michigan [Ann Arbor], University of Michigan System, Institut de Mathématiques de Jussieu - Paris Rive Gauche (IMJ-PRG (UMR_7586)), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP) |
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
Statistics and Probability
Pure mathematics Algebra and Number Theory Mathematics::Number Theory 010102 general mathematics 16. Peace & justice 01 natural sciences Theoretical Computer Science Computational Mathematics 0103 physical sciences FOS: Mathematics Discrete Mathematics and Combinatorics 010307 mathematical physics Geometry and Topology Representation Theory (math.RT) [MATH]Mathematics [math] 0101 mathematics Mathematics::Representation Theory Mathematical Physics Analysis Mathematics - Representation Theory Mathematics |
Zdroj: | Forum of Mathematics, Sigma Forum of Mathematics, Sigma, Cambridge University press, 2020, 8, pp.e2. ⟨10.1017/fms.2019.50⟩ |
ISSN: | 2050-5094 |
DOI: | 10.1017/fms.2019.50⟩ |
Popis: | Suppose that $\mathbf{G}$ is a connected reductive group over a finite extension $F/\mathbb{Q}_p$, and that $C$ is a field of characteristic $p$. We prove that the group $\mathbf{G}(F)$ admits an irreducible admissible supercuspidal, or equivalently supersingular, representation over $C$. 58 pages, with an appendix by Sug Woo Shin. This replaces arXiv:1712.10142 and arXiv:1808.08255. v2: Minor changes following referee report; to appear in Forum Math. Sigma |
Databáze: | OpenAIRE |
Externí odkaz: |