Automatic morphological description of sounds

Autor: Emmanuel Deruty, Geoffroy Peeters
Přispěvatelé: Analyse et synthèse sonores [Paris], Sciences et Technologies de la Musique et du Son (STMS), Institut de Recherche et Coordination Acoustique/Musique (IRCAM)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche et Coordination Acoustique/Musique (IRCAM)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), ircam, ircam
Rok vydání: 2008
Předmět:
Melody
Acoustics and Ultrasonics
Decision tree
02 engineering and technology
Loudness
030507 speech-language pathology & audiology
03 medical and health sciences
Arts and Humanities (miscellaneous)
Salience (neuroscience)
Mapping algorithm
0202 electrical engineering
electronic engineering
information engineering

[SPI.SIGNAL] Engineering Sciences [physics]/Signal and Image processing
Mathematics
[SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph]
[SPI.ACOU] Engineering Sciences [physics]/Acoustics [physics.class-ph]
Audio signal
business.industry
[SCCO.NEUR]Cognitive science/Neuroscience
[SCCO.NEUR] Cognitive science/Neuroscience
Search engine indexing
Pattern recognition
Automatic indexing
NA
020201 artificial intelligence & image processing
Artificial intelligence
0305 other medical science
business
[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing
Zdroj: Acoustics 08
Acoustics 08, Jun 2008, Paris, France
ISSN: 0001-4966
DOI: 10.1121/1.2935492
Popis: Morphological description has been proposed by Pierre Schaeffer. It consists in describing sounds by identifying the temporal evolution of their acoustical properties to a set of profiles. This kind of description is especially useful for indexing sounds with unknown cause such as SoundFX. The present work deals with the automatic estimation of this morphological description from audio signal analysis. In this work, three morphological descriptions are considered: ‐ dynamic profiles (ascending, descending, ascending/descending, stable, impulsive), ‐ melodic profiles (asc., desc. fixed, up/down, down/up) ‐ repetition profiles. For each case we present the most appropriate audio features (loudness, pitch, pitch salience, temporal increase/decrease, lag‐matrix‐periodicity, ...) and mapping algorithm (slope computed from spline approximations of temporal profiles, ...) used to automatically estimate the profiles. We demonstrate the use of these descriptions for automatic indexing (using decision trees) and se...
Databáze: OpenAIRE