Automatic morphological description of sounds
Autor: | Emmanuel Deruty, Geoffroy Peeters |
---|---|
Přispěvatelé: | Analyse et synthèse sonores [Paris], Sciences et Technologies de la Musique et du Son (STMS), Institut de Recherche et Coordination Acoustique/Musique (IRCAM)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche et Coordination Acoustique/Musique (IRCAM)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), ircam, ircam |
Rok vydání: | 2008 |
Předmět: |
Melody
Acoustics and Ultrasonics Decision tree 02 engineering and technology Loudness 030507 speech-language pathology & audiology 03 medical and health sciences Arts and Humanities (miscellaneous) Salience (neuroscience) Mapping algorithm 0202 electrical engineering electronic engineering information engineering [SPI.SIGNAL] Engineering Sciences [physics]/Signal and Image processing Mathematics [SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph] [SPI.ACOU] Engineering Sciences [physics]/Acoustics [physics.class-ph] Audio signal business.industry [SCCO.NEUR]Cognitive science/Neuroscience [SCCO.NEUR] Cognitive science/Neuroscience Search engine indexing Pattern recognition Automatic indexing NA 020201 artificial intelligence & image processing Artificial intelligence 0305 other medical science business [SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing |
Zdroj: | Acoustics 08 Acoustics 08, Jun 2008, Paris, France |
ISSN: | 0001-4966 |
DOI: | 10.1121/1.2935492 |
Popis: | Morphological description has been proposed by Pierre Schaeffer. It consists in describing sounds by identifying the temporal evolution of their acoustical properties to a set of profiles. This kind of description is especially useful for indexing sounds with unknown cause such as SoundFX. The present work deals with the automatic estimation of this morphological description from audio signal analysis. In this work, three morphological descriptions are considered: ‐ dynamic profiles (ascending, descending, ascending/descending, stable, impulsive), ‐ melodic profiles (asc., desc. fixed, up/down, down/up) ‐ repetition profiles. For each case we present the most appropriate audio features (loudness, pitch, pitch salience, temporal increase/decrease, lag‐matrix‐periodicity, ...) and mapping algorithm (slope computed from spline approximations of temporal profiles, ...) used to automatically estimate the profiles. We demonstrate the use of these descriptions for automatic indexing (using decision trees) and se... |
Databáze: | OpenAIRE |
Externí odkaz: |