Processing of color- and noncolor-coded signals in the gourami retina. I. Horizontal cells

Autor: Hildred Machuca, Hiroko M. Sakai, Ken-Ichi Naka
Rok vydání: 1997
Předmět:
Zdroj: Journal of neurophysiology. 78(4)
ISSN: 0022-3077
Popis: Sakai, Hiroko M., Hildred Machuca, and Ken-Ichi Naka. Processing of color- and noncolor-coded signals in the gourami retina. I. Horizontal cells. J. Neurophysiol. 78: 2002–2017, 1997. There are two types of horizontal cells, the luminosity and the chromaticity cells, in the retina of the kissing gourami, Helostoma rudolfi. Luminosity cells occupy the outermost layer proximal to the receptor terminals, whereas chromaticity cells form a layer proximal to the layer of luminosity cells. Neither type of cell has axons. Responses were evoked by light from red and green light-emitting diodes. The two stimuli were modulated either by a pulsatile or a white-noise signal. The luminosity cell always produced a hyperpolarizing response. The chromaticity cell produced a hyperpolarizing response when stimulated by only one color. However, in the presence of a steady or modulated green input, a red stimulus produced a depolarizing response. Such chromaticity cells were similar to the (spectral) biphasic chromaticity horizontal cells observed in other retinae. The depolarizing phase of the red response was produced by the balance of intensity of the two inputs, red and green. We used white-noise methodology to identify the dynamics of the horizontal cell's modulation response by taking advantage of the fact that a Wiener kernel is a measure of a cell's incremental sensitivity, which includes its response dynamics. Under all conditions, a steady state modulation response by both luminosity and chromaticity cells always was related linearly to the input modulation. The average mean square error (MSE) of the model predicted by the first-order kernel was ∼8% for both luminosity ( n = 116) and chromaticity ( n = 23) cells. In some cases, the MSE was a few percent even when the peak-to-peak response amplitude was nearly 30 mV. The ratio of inputs from red and green cones to both types of horizontal cells was variable; the major input for luminosity cells came from red cones, whereas the major input for chromaticity cells came from green cones. First-order kernels generated by the major input were robust in terms of waveform in the sense that the waveform remained unchanged whether or not there was a steady or modulated illumination by the opposing color. The results reported here do not address the question of the neural circuitry that generates horizontal cell responses, in particular, the depolarizing response. However, whatever that circuitry might be, the high degree of linearity of the modulation response by both types of cell under various stimulus conditions imposes restrictions on the performance of any proposed model as well as on mechanisms that underlie the generation of the horizontal cell response.
Databáze: OpenAIRE