Tension promotes kinetochore-microtubule release by Aurora B kinase

Autor: Alexey Khodjakov, Huaiying Zhang, David M. Chenoweth, Michael A. Lampson, Geng-Yuan Chen, Fioranna Renda, Daniel Z Wu, Alper Gokden
Rok vydání: 2020
Předmět:
Zdroj: The Journal of Cell Biology
ISSN: 1540-8140
Popis: Chen et al. show how kinetochores integrate mechanics and biochemistry using optogenetic manipulation of Aurora B kinase. Aurora B promotes microtubule depolymerization at low tension or microtubule release at high tension. Thus, tension is a signal inducing distinct error-correction pathways.
To ensure accurate chromosome segregation, interactions between kinetochores and microtubules are regulated by a combination of mechanics and biochemistry. Tension provides a signal to discriminate attachment errors from bi-oriented kinetochores with sisters correctly attached to opposite spindle poles. Biochemically, Aurora B kinase phosphorylates kinetochores to destabilize interactions with microtubules. To link mechanics and biochemistry, current models regard tension as an input signal to locally regulate Aurora B activity. Here, we show that the outcome of kinetochore phosphorylation depends on tension. Using optogenetics to manipulate Aurora B at individual kinetochores, we find that kinase activity promotes microtubule release when tension is high. Conversely, when tension is low, Aurora B activity promotes depolymerization of kinetochore–microtubules while maintaining attachment. Thus, phosphorylation converts a catch-bond, in which tension stabilizes attachments, to a slip-bond, which releases microtubules under tension. We propose that tension is a signal inducing distinct error-correction pathways, with release or depolymerization being advantageous for typical errors characterized by high or low tension, respectively.
Databáze: OpenAIRE