Higher order Cheeger inequalities for Steklov eigenvalues

Autor: Laurent Miclo, Asma Hassannezhad
Přispěvatelé: Institut Mittag-Leffler, Institut de Mathématiques de Toulouse UMR5219 (IMT), Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), ANR-12-BS01-0019,STAB,Stabilité du comportement asymptotique d'EDP, de processus stochastiques et de leurs discrétisations.(2012), Laboratoire de Mathématiques et Physique Théorique (LMPT), Université de Tours (UT)-Centre National de la Recherche Scientifique (CNRS), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université de Tours
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Mathematics - Differential Geometry
Dirichlet–to–Neumann operator
Spectral theory
General Mathematics
01 natural sciences
Upper and lower bounds
Laplace-Beltrami operator
higher order Cheeger inequalities
Combinatorics
Mathematics - Spectral Theory
0103 physical sciences
FOS: Mathematics
Order (group theory)
0101 mathematics
Spectral Theory (math.SP)
B- ECONOMIE ET FINANCE
Dirichlet--to--Neumann operator
35P15
58J50
58J65
60J25
60J27

Mathematics
MSC2010: 15A18
35P15
58J50
58J65
60J25
60J27
60J60
60J75

Dirichlet-to-Neumann operator
Probability (math.PR)
010102 general mathematics
Spectrum (functional analysis)
eigenvalues
higher or-der Cheeger inequalities
Mathematics::Spectral Theory
jump Markov processes
[MATH.MATH-PR]Mathematics [math]/Probability [math.PR]
Steklov problems
Differential Geometry (math.DG)
Differential geometry
Laplace–Beltrami operator
Bounded function
Steklov problem
Brownian motion on Riemannian manifolds
010307 mathematical physics
isoperimetric ratios
finite Markov processes
Isoperimetric inequality
Mathematics - Probability
[MATH.MATH-SP]Mathematics [math]/Spectral Theory [math.SP]
Zdroj: Hassannezhad, A & Miclo, L 2020, ' Higher order Cheeger inequalities for Steklov eigenvalues ', Annales Scientifiques de l'École Normale Supérieure, vol. 53, no. 1, pp. 43-88 . https://doi.org/10.24033/asens.2417
Annales Scientifiques de l'École Normale Supérieure
Annales Scientifiques de l'École Normale Supérieure, 2019
Annales Scientifiques de l'Ecole Normale Superieure
Annales Scientifiques de l'École Normale Supérieure, Société mathématique de France, 2019
ISSN: 0012-9593
1873-2151
DOI: 10.24033/asens.2417
Popis: We prove a lower bound for the $k$-th Steklov eigenvalues in terms of an isoperimetric constant called the $k$-th Cheeger-Steklov constant in three different situations: finite spaces, measurable spaces, and Riemannian manifolds. These lower bounds can be considered as higher order Cheeger type inequalities for the Steklov eigenvalues. In particular it extends the Cheeger type inequality for the first nonzero Steklov eigenvalue previously studied by Escobar in 1997 and by Jammes in 2015 to higher order Steklov eigenvalues. The technique we develop to get this lower bound is based on considering a family of accelerated Markov operators in the finite and mesurable situations and of mass concentration deformations of the Laplace-Beltrami operator in the manifold setting which converges uniformly to the Steklov operator. As an intermediary step in the proof of the higher order Cheeger type inequality, we define the Dirichlet-Steklov connectivity spectrum and show that the Dirichlet connectivity spectra of this family of operators converges to (or bounded by) the Dirichlet-Steklov spectrum uniformly. Moreover, we obtain bounds for the Steklov eigenvalues in terms of its Dirichlet-Steklov connectivity spectrum which is interesting in its own right and is more robust than the higher order Cheeger type inequalities. The Dirichlet-Steklov spectrum is closely related to the Cheeger-Steklov constants.
Correcting few typos and doing some changes on pages 41 and 45
Databáze: OpenAIRE