Production of fatty acids in Ralstonia eutropha H16 by engineering β-oxidation and carbon storage

Autor: Marika Ziesack, Brendon Dusel, Joseph P. Torella, Brendan Cruz Colon, Jeffrey C. Way, Janice S. Chen
Jazyk: angličtina
Rok vydání: 2015
Předmět:
Zdroj: PeerJ, Vol 3, p e1468 (2015)
PeerJ
ISSN: 2167-8359
Popis: Ralstonia eutrophaH16 is a facultatively autotrophic hydrogen-oxidizing bacterium capable of producing polyhydroxybutyrate (PHB)-based bioplastics. As PHB’s physical properties may be improved by incorporation of medium-chain-length fatty acids (MCFAs), and MCFAs are valuable on their own as fuel and chemical intermediates, we engineeredR. eutrophafor MCFA production. Expression ofUcFatB2, a medium-chain-length-specific acyl-ACP thioesterase, resulted in production of 14 mg/L laurate in wild-typeR. eutropha. Total fatty acid production (22 mg/L) could be increased up to 2.5-fold by knocking out PHB synthesis, a major sink for acetyl-CoA, or by knocking out the acyl-CoA ligasefadD3, an entry point for fatty acids intoβ-oxidation. As ΔfadD3mutants still consumed laurate, and because theR. eutrophagenome is predicted to encode over 50 acyl-CoA ligases, we employed RNA-Seq to identify acyl-CoA ligases upregulated during growth on laurate. Knockouts of the three most highly upregulated acyl-CoA ligases increased fatty acid yield significantly, with one strain (ΔA2794) producing up to 62 mg/L free fatty acid. This study demonstrates that homologousβ-oxidation systems can be rationally engineered to enhance fatty acid production, a strategy that may be employed to increase yield for a range of fuels, chemicals, and PHB derivatives inR. eutropha.
Databáze: OpenAIRE