Action adjointe sur les graphes et la preuve de la conjecture P=NP

Autor: Sghiar, Mohamed
Přispěvatelé: Sghiar, Mohamed, Chercheur indépendant
Jazyk: angličtina
Rok vydání: 2020
Předmět:
[INFO.INFO-CC]Computer Science [cs]/Computational Complexity [cs.CC]
[INFO.INFO-AI] Computer Science [cs]/Artificial Intelligence [cs.AI]
[INFO.INFO-DS]Computer Science [cs]/Data Structures and Algorithms [cs.DS]
[INFO.INFO-DS] Computer Science [cs]/Data Structures and Algorithms [cs.DS]
the travelling salesman problem
[MATH] Mathematics [math]
[INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM]
15AXX
68W99
[INFO.INFO-CL]Computer Science [cs]/Computation and Language [cs.CL]
Graph
[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI]
P=NP
[INFO.INFO-CR]Computer Science [cs]/Cryptography and Security [cs.CR]
[MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO]
[MATH.MATH-RA] Mathematics [math]/Rings and Algebras [math.RA]
Analysis of algorithms
14LXX
[MATH]Mathematics [math]
05CXX
[INFO.INFO-CR] Computer Science [cs]/Cryptography and Security [cs.CR]
68XX
[MATH.MATH-RA]Mathematics [math]/Rings and Algebras [math.RA]
05XX
TSP
68R05
15B10
adjoint action
[MATH.MATH-CO] Mathematics [math]/Combinatorics [math.CO]
[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM]
adjoint action Code : 68R10
[INFO.INFO-CL] Computer Science [cs]/Computation and Language [cs.CL]
14-XX
[INFO.INFO-CC] Computer Science [cs]/Computational Complexity [cs.CC]
Hamilton cycles
Zdroj: IOSR Journal of Computer Engineering (IOSR-JCE)
IOSR Journal of Computer Engineering (IOSR-JCE), International Organization Of Scientific Research (IOSR), A paraître, 22 (Issue 3, Serie II), pp.46-49
ISSN: 2278-0661
DOI: 10.13140/rg.2.2.22302.28485/2
Popis: I study the link between the adjoint action and the Hamiltonian cycles in a symmetric graph. Then by a simple algebraic resolution of a system of equations with several variables I nd all the Hamiltonian cycles of the graph. Finally I will apply the results found to give an algorithm of order O(n 3) allowing to quickly give all the Hamiltonian cycles with their distance. This gives a proof of the conjecture P = N P. (see [1]).
J'étudie le lien entre l'action adjointe et les cycles Hamiltoniens dans un graphe symétrique. Puis par une simple résolution algébrique d'un système d'équations à plusieurs variables on trouve tous les cycles Hamilto-niens du graphe. Enn j'appliquerai les résultats trouvés pour donner un algo-rithme de l'ordre de O(n 3) permettant de donner rapidement tout les cycles Hamiltoniens avec leur distance. Ce qui donne une preuve de la conjecture P = N P. (voir [1]).
Databáze: OpenAIRE