Action adjointe sur les graphes et la preuve de la conjecture P=NP
Autor: | Sghiar, Mohamed |
---|---|
Přispěvatelé: | Sghiar, Mohamed, Chercheur indépendant |
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
[INFO.INFO-CC]Computer Science [cs]/Computational Complexity [cs.CC]
[INFO.INFO-AI] Computer Science [cs]/Artificial Intelligence [cs.AI] [INFO.INFO-DS]Computer Science [cs]/Data Structures and Algorithms [cs.DS] [INFO.INFO-DS] Computer Science [cs]/Data Structures and Algorithms [cs.DS] the travelling salesman problem [MATH] Mathematics [math] [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM] 15AXX 68W99 [INFO.INFO-CL]Computer Science [cs]/Computation and Language [cs.CL] Graph [INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI] P=NP [INFO.INFO-CR]Computer Science [cs]/Cryptography and Security [cs.CR] [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO] [MATH.MATH-RA] Mathematics [math]/Rings and Algebras [math.RA] Analysis of algorithms 14LXX [MATH]Mathematics [math] 05CXX [INFO.INFO-CR] Computer Science [cs]/Cryptography and Security [cs.CR] 68XX [MATH.MATH-RA]Mathematics [math]/Rings and Algebras [math.RA] 05XX TSP 68R05 15B10 adjoint action [MATH.MATH-CO] Mathematics [math]/Combinatorics [math.CO] [INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM] adjoint action Code : 68R10 [INFO.INFO-CL] Computer Science [cs]/Computation and Language [cs.CL] 14-XX [INFO.INFO-CC] Computer Science [cs]/Computational Complexity [cs.CC] Hamilton cycles |
Zdroj: | IOSR Journal of Computer Engineering (IOSR-JCE) IOSR Journal of Computer Engineering (IOSR-JCE), International Organization Of Scientific Research (IOSR), A paraître, 22 (Issue 3, Serie II), pp.46-49 |
ISSN: | 2278-0661 |
DOI: | 10.13140/rg.2.2.22302.28485/2 |
Popis: | I study the link between the adjoint action and the Hamiltonian cycles in a symmetric graph. Then by a simple algebraic resolution of a system of equations with several variables I nd all the Hamiltonian cycles of the graph. Finally I will apply the results found to give an algorithm of order O(n 3) allowing to quickly give all the Hamiltonian cycles with their distance. This gives a proof of the conjecture P = N P. (see [1]). J'étudie le lien entre l'action adjointe et les cycles Hamiltoniens dans un graphe symétrique. Puis par une simple résolution algébrique d'un système d'équations à plusieurs variables on trouve tous les cycles Hamilto-niens du graphe. Enn j'appliquerai les résultats trouvés pour donner un algo-rithme de l'ordre de O(n 3) permettant de donner rapidement tout les cycles Hamiltoniens avec leur distance. Ce qui donne une preuve de la conjecture P = N P. (voir [1]). |
Databáze: | OpenAIRE |
Externí odkaz: |