LDA Ensembles for Interactive Exploration and Categorization of Behaviors

Autor: Jörg Kindermann, Cagatay Turkay, Phong H. Nguyen, Linara Adilova, Gennady Andrienko, Olivier Thonnard, Siming Chen, Natalia Andrienko, Jeremie Barlet
Přispěvatelé: Publica
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: IEEE Transactions on Visualization and Computer Graphics
ISSN: 1077-2626
Popis: We define behavior as a set of actions performed by some actor during a period of time. We consider the problem of analyzing a large collection of behaviors by multiple actors, more specifically, identifying typical behaviors and spotting anomalous behaviors. We propose an approach leveraging topic modeling techniques – LDA (Latent Dirichlet Allocation) Ensembles – to represent categories of typical behaviors by topics that are obtained through topic modeling a behavior collection. When such methods are applied to text in natural languages, the quality of the extracted topics are usually judged based on the semantic relatedness of the terms pertinent to the topics. This criterion, however, is not necessarily applicable to topics extracted from non-textual data, such as action sets, since relationships between actions may not be obvious. We have developed a suite of visual and interactive techniques supporting the construction of an appropriate combination of topics based on other criteria, such as distinctiveness and coverage of the behavior set. Two case studies on analyzing operation behaviors in the security management system and visiting behaviors in an amusement park, and the expert evaluation of the first case study demonstrate the effectiveness of our approach.
Databáze: OpenAIRE