Calpain-3 is autolyzed and hence activated in human skeletal muscle 24 h following a single bout of eccentric exercise

Autor: Jason A. Bennie, Robyn M. Murphy, Michael J. McKenna, Murray J. Leikis, Graham D. Lamb, Craig A. Goodman
Rok vydání: 2007
Předmět:
Zdroj: Journal of applied physiology (Bethesda, Md. : 1985). 103(3)
ISSN: 8750-7587
Popis: The function and normal regulation of calpain-3, a muscle-specific Ca2+-dependent protease, is uncertain, although its absence leads to limb-girdle muscular dystrophy type 2A. This study examined the effect of eccentric exercise on calpain-3 autolytic activation, because such exercise is known to damage sarcomeric structures and to trigger adaptive changes that help prevent such damage on subsequent exercise. Six healthy human subjects performed a 30-min bout of one-legged, eccentric, knee extensor exercise. Torque measurements, vastus lateralis muscle biopsies, and venous blood samples were taken before and up to 7 days following the exercise. Peak isometric muscle torque was depressed immediately and at 3 h postexercise and recovered by 24 h, and serum creatine kinase concentration peaked at 24 h postexercise. The amount of autolyzed calpain-3 was unchanged immediately and 3 h after exercise, but increased markedly (from ∼16% to ∼35% of total) 24 h after the exercise, and returned to preexercise levels within 7 days. In contrast, the eccentric exercise produced little autolytic activation of the ubiquitous Ca2+-activated protease, μ-calpain. Eccentric exercise is the first physiological circumstance shown to result in calpain-3 activation in vivo.
Databáze: OpenAIRE