Arithmetic functions of higher-order primes
Autor: | Kyle Czarnecki, Andrew Giddings |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Discrete mathematics
Beurling zeta function 11A41 General Mathematics Mathematics::Number Theory 11N80 Prime number Order (ring theory) Upper and lower bounds Prime (order theory) prime-indexed primes abstract analytic number theory Set (abstract data type) Sieve of Eratosthenes 11N37 Arithmetic function Mathematics |
Zdroj: | Involve 13, no. 2 (2020), 181-191 |
Popis: | The sieve of Eratosthenes (SoE) is a well-known method of extracting the set of prime numbers [math] from the set positive integers [math] . Applying the SoE again to the index of the prime numbers will result in the set of prime-indexed primes [math] . More generally, the application of the SoE [math] -times will yield the set [math] of [math] -th order primes. In this paper, we give an upper bound for the [math] -th [math] -order prime as well as some results relating to number-theoretic functions over [math] . |
Databáze: | OpenAIRE |
Externí odkaz: |